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The contact problem of the wear caused by the melting of a thin polymer bushing of a sliding bearing is 

considered on the assumption that the coefficient of friction is a function of temperature. The relation 

for the critical speed of rotation of the shaft at which melting begins is obtained. Formulae for the basic 

parameters of the contact interaction such as the residue of the bushing, the angle of contact and the 

contact pressure are also derived. 

THE PLANE and axisymmetric contact problems of the wear caused by the melting of an elastic 
layer and a half-space was first stated and solved in [l, 21 on the assumption that the contact 
area does not vary with time and that, because of friction forces, the rise in temperature under 
a punch is sufficient to melt the elastic base. In this case the melted material was pressed out 
from the region under the punch, and caused it to be deposited. In what follows, a method of 
solving the contact problem of the wear caused by melting is presented for the case of a 
variable contact area. 

1. Consider a thin polymer ring (that is the bushing of a sliding bearing) of inner radius R 
and of outer radius R. The ring is connected to a non-deformable race along the outer contour, 
and a part of its inner surface is in a contact with a rigid shaft of radius RI = R- A (AR-‘+l, 
hR%l, h = R, -R) which rotates about its axis with a constant angular velocity o and 
produces a force P = P(r) on the bushing (Fig. 1). Wear of the surface of the bushing occurs 
during the process, and is accompanied by the generation of heat in the contact area. More- 
over, if o < u., the wear is caused by fretting [3] but when o > w the wear starts as a result of 
melting (w is the critical value of the rotation speed of the shaft, and will be specified below). 
We will restrict ourselves here by examining the second situation when w > w. 

Assume that (1) the shaft and the race have no wear, i.e. their melting points are far higher 
than that of the ring, (2) the viscosity of the bushing can be neglected, (3) inertial effects of the 
ring can be negligibly small, and (4) the friction force is related to the contact pressure q(tp, t) 
by the Coulomb law with the coefficient depending on the temperature T = T(q, t) in the 
contact area I p, Is a(t) 

From now on, the temperature of the surrounding medium is taken as the origin of the 
temperature scale, and the subscripts 1,2 and 3 are ascribed to quantities relating to the shaft, 
ring and race, respectively. 
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FIG. 1. 
IX 

We will assume that the force P(t) varies in time in such a manner that the function a = a(t) 
increases monoto~cally with time. In this case, the inverse function f = ~(a) exists, and since it 
is single-valued, and, it is possible to use a as a new time parameter [4, 51. Therefore let us 
assume that the dependence of the corresponding quantities on time is complex, for instance, 
cl@ r) = 4@, a(r)), p(t) = P@O)), etc. 

We wiil write the equation of the energy balance [2] when o > cry, 

Q&s t)=Q,(O+Q,(t> +QoCa 61 (14 Q a> (1.2) 

In (1.2) Q((p, t) is the total amount of heat generated per unit of time, it is proportional to the 
power of friction forces 

Q&) is the value computed by averaging the heat flux into the bushing over the contact area 
(the heat flux maintains the temperature in this area near the melting point T, of the material 
of the bushing), Q1(f) is the similar value of the heat flux into the shaft, and Q,&, t) is the 
amount of heat required to melt the material of the ring when 1 p I< a(f). 

We will assume that the condition of the contact of the shaft with the bushing has the form 

u(yl,t)t~(q~ tj= [P(t)+A] cos~p-A (Iql Sa) (14 

where u((p, t) are the thermoelastic radial displacements of the points of the ring, v(rp, t) are the 
displacements caused by its wear, and /3(t) is a translational displacement of the tenon under 
the action of the force P. 

In order to evaluate the function u(cp, t) we will change the d~ensionless variable 

r =RefP, E = ln (1 t h/R) (1.5) 

in LamB’s equations with temperature terms and in the formulae of Hooke’s law. 
We then have 
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Here y and u+, are the radial and tangential components of the vector of displacements of 
the points of the ring, cr, and r”? are the corresponding components of the stress tensor, G and 
v are the elastic parameters of the bushing, T, is its temperature, and a, is the coefficient of 
linear expansion. 

We will construct a solution of system (1.6) which is asymptotic to within O(8) and satisfies 
the equalities 

p=l :tc,=u,=o (1.8) 

For that purpose we express the functions U, and u? in the form 

If we substitute formulae (1.9) into relations (1.6)-(1.8) and simplify the result making use of 
the asymptotic forms, we obtain the following recurrent system 
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The solutions of Eqs (1.10) and (1.11) have the form 

a’0 =-e -f+l)q. *,=e; @--l)r 

(1.10) 

(1.11) 

(1.12) 
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If we substitute (1.12) into the first formula of (1.9) and set p=O in the relation obtained, we 
obtain 

z+(O,cp, t) = u(q, t) = e(~f?G-‘q - BRT) + 

(1.13) 

Note that expression (1.13) was obtained in [6] in a more complicated manner. Henceforth, 
while using formula (1.13), we shall neglect the second term in it since it is much smaller than 
the first one. 

2. In order to find the displacement v(rp, t) let us evaluate the critical speed w, by solving 
first the steady-state problem of heat conduction for the ring 

V2T2 =0 (17’ =$ 
1 a 1 a2 

+- -t- 
r ar 

-) 
r2 aq2 

(2.1) 

r=R : T2 =T, (Icpi G(u) (2.2) 

aT2 +K~(T~ - T,)=O (iqi >a) --x2 - 
ar 

r =Rb2 : T, =@(q) (Icpl <n) 

Here 4 and k, are, respectively, the coefficients of thermal conductivity and heat exchange 
coefficient for the material of the bushing, and T, is the temperature of the air in the bearing. 

In accordance with the physical meaning of the original problem we have the condition 
A.&‘+1 (4 is the coefficient of thermal conduction of the race) in consequence of which the 
projection of the temperature gradient onto the direction from the race to the bushing is small. 
For this reason we assume that the temperature distribution on the outer surface of the bush- 
ing is specified. 

In order to evaluate the function cP(cp> we should study the problem on heat conduction for 
the race. From a consideration of the data on the extrema of the temperature distribution on its 
inner surface we can conclude that this distribution is governed by the relation [7] 

T,(Rl,cp)=T3(Rz,cp)=~(~)=Do +D, coscp (2.3) 

We find the constants D, and D1 by making use of the measurements data of the temper- 
ature at two characteristic points of the contact area of the race with the bushing for each 
instant of functioning of the bearing 

T 
Do = 

2max + T2 min , D _ T2max - T2 min 

2 
1- 

2 

T 2maxzT2(R2,0)r T2minzT2(R2.7c) 

The solution of the boundary-value problem (2.1), (2.2) may be constructed by the asymp- 
totic method given in Sec. 1, where the problem of thermoelasticity for a thin ring was exam- 
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ined, if we introduce the dimensionless variable p of form (1.5) into the original expressions. 
Omitting details we write 

T, =T, -(T, -@)p (Ipl <a) 

T2 = 
EKzR(@ - Ta) X,4, + EK~RT~ 

(2.4) 
X2 +-EK~R 

P+ 
A2 + EK~R 

(191 >a) 

as a first approximation, 
Using of the first formula of (2.4) we evaluate the heat flux -A.$& tdr when r = l?, by 

averaging this function over the contact area, and taking account of relation (2.3), we obtain 

l-22(t) = A2 @fq-’ (T* - D* - Dg a-l sin a) (2.5) 

Now let us find the value Q,(r). For this purpose we solve the problem of heat conduction 
for an infinite shaft assuming that the bushing is of finite length 21. We stress [8] that when the 
rotation speed is greater than 5 set-‘, the assumption of a uniform distribution of the incoming 
heat flux along the entire surface of the shaft is valid. By virtue of this, it is possible to study the 
problem according to the simplified axisymmetric statement using the averaged temperature of 
the shaft 

We then have 

a25= 1 1 
-$- +7 

aT, 
br 

(2.6) 

t 
a2i= 1 

az2 
SO (2.7) 

r=Rx :Ii;; ==T, (lzl <I> (2.8) 
h&T&ktKJ~ =o (lzl >I), Fl -ho (Izl +ce) 

To solve problem (2.7), (2.8) let us employ the Fourier transform with respect to the variable 
z = xl. We obtain an integral equation of the first kind 

; k(?) p(DdE=TkT* (Ix1 < 1) 
-1 

for the function p(x) defined by the relation 

xr, - 
AI - 

p(x) (r=Ri, 1x1 Gl) 

ar 
t KATE= 

0 (r=R1, 1x1 >l) 

(2.9) 

(2.10) 

In practice, the parameter I varies over the interval 0 < Ad 0.3, as a rule. Taking this fact 
into account we can approximate the symbol of the kernel in the integral equation (2.9) by the 
expression [9] 

IO(U) c2 +cg12 
2s 

ul1(u)t~o@) u4 t(c, txc$2 +-Xc2 
(2.11) 
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cl =38,37; c2 =76.74; c3 = 11.45 

to within 3%. 
Note that Eq. (2.9) with (2.11) is correctly solvable in the space of generalized slowly increas- 

ing functions and its solution is represented in the form [IO] 

p(x)=Ar +Azch(E)+Aj16( 
x+1 x-l 
J-)+6(cc)], s= c’ J- 

cc c3 
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where s(t) is the Dirac delta function. When we average relation (2.12) with respect to x and 
substitute the result into (2.10) we obtain 

Q, =Xli3~,/~r=p[A2s-’ sh(s/&tA,] (2.13) 

if the first condition of (2.8) is taken into account. 
To determine the critical speed of rotation of the shaft w, = w,(a) at which the melting of the 

material of the bushing begins, let us approximate the contact pressure q(r~?, t) by the expres- 
sion [ll] 

4(G 1) = 
P(cos $9 - cos a) 

Rr(cu-‘hsin2a) ’ 
W> = R I ,” 4 (q. t) cos rp dq 

-a 
(2.14) 

If we introduce it into formulae (ll), (1.3) and average the value Q(q, t) of the heat flux 
generated by dry friction over the contact area, we have 

Q(r) = qR,f(T,)~(t), 40) = 
P(sin CY - o! cos a) 

Rla(cr-%sin2a) 
(2.15) 

Now summarizing formulae (1.2) when w = w,, and (2.5) (2.13) and (2.15) we write 

o,RJ(T,) 4 = Q, t h2 (eR)-1 (T, --- Do --- D1 a-’ sin a) (2.16) 

Let us compute the deposit p(t) of the ring with dry friction according to relations (1.13), 
(2.6) of [.5] taking the temperature T. in the contact area into account 

P(t) = [A(1 - cos (Y) - eBRT,] COS-~(Y (2.17) 

EKR (R 1 C)-’ PO = [(cxo - $4 sin 2ao) (A - &RT,)] cos-1 a0 

PO =P(O), a0 =a(O), PO =P(O) 

Furthermore, we take the limit value b = b(t) (& c b c II) for which the wear of the bushing 
caused by melting occurs and from the first formula of (2.17) we find the value of the angle & 
corresponding to it. Knowing a,, and & we specify the required value of the critical speed of 
rotation of the shaft by formula (2.16) as w. = maxo,(a) (a0 =S a s &). 
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3. Let o>(ix. Then for the surplus amount of heat needed to melt the material of the 
bushing is given by 

Q. (9, t) = WR ,f(T,) ij-(p, r) - Q, - h2 (ER)-l (T, -- D,, -- D,a-’ sin a) (I cpl < a) (3.1) 

according to formulae (l.l)-(1.3), (2.5) and (2.13). 
Now we take into account that [l, 21 

where g is the specific heat of fusion of the material of the ring, and y is its density. Basing 
ourselves on relations (3.1) and (3.2) we find 

gyu=Rlf(T,)w ; q(p,~) h--r+ 
Dlhl 

- J(r) 
0 ER 

t sins(7) 

JW = I - dq k=Ql +X&R)-’ (T, -Do) 
0 NT) 

whence, according to (1.4) and (1.13), we obtain the following integral equation for evaluating 
the unknown contact pressure 

a,4(q,t)ta2 ; 4(q,T)dr=[P(r)+A] coscp-A+eBT, +mt--J(t) 
0 

(3.3) 

Here the dimensionless variable t’ = D&eZ?*gy)-‘t and the notation 

q”(p,?)=q(q, r)G-‘, @)=&r)R-‘, a” =AR-‘, Ei(t”)= a(r), 

r” =+i), m =ekR(D&)-‘, a, =fx, a2 = ERRIf Gw(D,h,)-’ 

have been introduced. In (3.3) and in what follows the tilde is omitted. 
In order to obtain the closed form of the original contact problem it is necessary to add to 

Eq. (3.3) the condition of quasi-equilibrium (the second formula of (2.14)) written in dimen- 
sionless form 

N(r) = P(R 1 G)-’ = i q (p, r) cos cp dq (3.4) 
-cX 

and the relation 

464 r>=o (Id >a) (35) 

specifying the unknown area of contact of the shaft with the bushing. 
Note that expression (3.5) enables us to rewrite the integral equation (3.3) as the system 

Vq = [p(r) t A] cos cp - A + eBT, + mr --J(r) (3.6) 
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to solve which we use the algorithm from [5] together with the step-by-step method 1121. 
Let us divide the segment [0, i] into small sections (ti, tj+l ] (i = 0-(ra- l), t, = 0, t, = i) and 

substitute the approximate value 

(3.7) 

of the integral over the segment (ti, t,,] into the rjght-hand sides of Eqs (3.6). 
We obtain a recurrent system of problems which enables us to find the basic characteristics 

of contact interaction at each time step. To do so, we first evaluate a0 from formulae (2.17) 
(below we shall assume that N(f) = N = const in (3.4)) and, in accordance with (3.7), we next 
write 

Vq = [P(r) f A] cos p -- fo(t), fo(t) = A - eZ3T, + (Cyo’ sin a0 - m) c 

with t E (0, tl ] whence we find? 

(3.8) 

F(p) (A - &T,) - alN cp-%sin2ip 
%w= 

a,N - F(p) (ty;’ sin 01~ - M) ’ 
F(cp)= 

cos cp 

Setting t =fr in the second relation of (3.8) and evaluating the angle aI we transfer to the 
interval (r,, tz] and so on. As the result, we have 

V4 = @Q) + A] cosp -h(r), f;:(t)= A -EDT, f 

for the ith (i rs 1) step. 
The solution of system (3.9) is given by (3.8) in which j,(t) 

(i 2 1), but for q(q) we take 

rlw = 
F(rp)(A--EBT, +21)-alN 

a,N - F(p) ((Y;’ sin oli - m) 

(3.91 

should be replaced by fi(t) 

~K~VALE~K~ Ye. V., Some contact problems for bodies with thin porous-elastic coating. Preprint No. 458, Inst. 

Probl. Mekh. Akad. Nauk SSSR, Moscow, 1990. 
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ff a.4 P, rad 

FIG. 2. 

4. As an example, the basic characteristics of contact interaction during the melting of a sliding bearing 
were computed. The shaft and the race of the bearing are made of steel, the material of the bushing is the 

PTFE F4K20, the parameters take the following values: R=13mm, R,=12Smm, R,=14smm, 
R, = 29.5 mm, I=50 mm, G= 3xld MPa, v =0.4, f, =O.l, f2 =O, 4 =25.35 W/(m “C), 4 = 0.39 W/ 
(m “C), aT = 8 x 10” (“C)-‘, k, = 402 W/(m “C), k, = 36 W/(m “C), T. = 250 “C, Q, = 235 “C, and Dl = 

4 OC. 
The variation of the critical speed of rotation of the shaft n = q(a)/q(a,) for different values of the 

time-constant dimensionless load that acts upon the tenon is shown in Fig. 2 (the curves 1, 2 and 3 
correspond to N = 3x10w3, 7 x10e3 and lo-‘). For the three cases in question we therefore have (1) 
a,, = 0.135, o,(aO) = 7.96 set-‘; (2) a, = 0.178, w,(a,) = 4.51 se&; (3) a, = 0.201, w,(a0) = 3.55 se&. Note 
that the negative-valued depositions of the bushing &R-’ = -0.479 x lo”, &,R-’ = -0.456 x10-* and &,Rml = 

-0.456x10-*, correspond to specified values of the angles of contact. This fact shows that, as a rule, the 

wear caused by melting occurs in the bearing once there is a loss of the thermal-force stability [13]. For 
this reason the second term inside the parentheses of formula (1.13) predominates over the first term. 

Furthermore, setting jR_’ = 0 we evaluate the angle of contact & = 0.521 which corresponds to this value 

of the deposit. Knowing this angle we find w, =29.99 set”, w. = 12.85 set-‘, and o. = 8.99 se? for the 
three cases of shaft loading considered. 

The evolution of the dimensionless contact pressure with time in the process of wearing by melting 
with N = lo-* and w = 9 set-’ is given on the left-hand side of Fig. 2 (curves 1,2 and 3 correspond to t = 0, 

10” and lo-‘). Note that for the pressure the maximum discrepancy between the values presented above 
and those obtained by formula (2.14) is less than 15%. Therefore in order to obtain a rough estimate of 

the results, expression (2.14) may be used in practice which is much simpler than analogous relations 
(3.8). 
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